
APONE: Academic Platform for ONline Experiments
Mónica Marrero

Delft University of Technology
Delft, the Netherlands

m.marrerollinares@tudelft.nl

ABSTRACT
Although online experiments, often in the form of A/B tests, are
increasingly used by academic researchers (with crowd-working
platforms offering a large pool of artificial users), few platforms
are freely available to this end. Academic researchers usually de-
velop adhoc solutions, leading to many duplicated efforts and time
spent on issues not directly related to one’s research. As an alterna-
tive, we have developed and open sourced APONE, an Academic
Platform for ONline Experiments. APONE uses PlanOut, a frame-
work and high-level language to specify online experiments, and
offers Web services and a Web GUI to easily create, manage and
monitor them. We have put it into practice in an Information Re-
trieval course, where students have conducted online experiments
with their classmates as participants. We open-source APONE at
https://marrerom.github.io/APONE/. A demo version is running at
http://ireplatform.ewi.tudelft.nl:8080/APONE.

KEYWORDS
A/B testing, Online Experiments, Open Source Platform

ACM Reference Format:
Mónica Marrero. 2018. APONE: Academic Platform for ONline Experiments.
In Proceedings of Design of Experimental Search & Information REtrieval
Systems (DESIRES 2018). ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Information Retrieval (IR) systems have traditionally been eval-
uated through off-line evaluation with test collections [5]. This
evaluation method has its limitations when it comes to investigat-
ing how people interact and use search systems. This is the focus
of Interactive IR (IIR) where we study for example whether the
search behavior changes depending on users’ typing speed [14].
Laboratory experiments are an alternative but they have important
limitations like poor scalability and lack of a natural environment
to explore the real—instead of simulated—needs of users.

In an effort to overcome these limitations the IR community has
proposed Living Labs [1, 3, 9], trying to simulate what already hap-
pens in the industrial environment. Companies behind global web
portals such as Linkedin [17], Bing [10], or Facebook [2] have devel-
oped their own specific platforms to automate online experiments,
systematically registering the interactions of users (customers) with
their product in a non-obtrusive way to later analyze them before
introducing changes. However, in the IR community Living Labs
are not yet widespread (although some important advances have

DESIRES 2018, August 2018, Bertinoro, Italy
© 2018 Copyright held by the author(s).

been made [4, 7]). In the meantime academics usually develop ad-
hoc solutions to run their IIR experiments, replicating efforts and
making those experiments more difficult to reproduce.

As an alternative, we have designed APONE, an open source
experimental platform with the focus on A/B testing for IIR experi-
ments. A/B testing is the most common type of experiment on the
web, where we compare different variants (control and treatment/s)
by registering and analyzing the behavior of users, each one usually
exposed to one of those variants. APONE was designed with two
specific target audiences in mind: (i) academic researchers that want
to employ A/B testing without worrying about the programmatic
overhead, and (ii) large classrooms where students are engaged in
research practice, quickly designing and implementing experiments
(IIR experiments in our case) with their fellow students as user pool.

Let us introduce a possible research scenario here: imagine re-
searcher Alice hypothesizes that a novel design of the search box
in the search site of her university will lead to longer queries than
the current design. She creates a corresponding experiment within
APONE, and develops a client such that for every visitor of the
university website an AJAX call requests the platform (using their
session ID as key) for the corresponding variant A or B to be dis-
played. The length of the queries issued by the users is registered
in APONE to be later analyzed, and after 5,000 exposures the ex-
periment is complete and the standard design A is served to all
visitors.

We have already put APONE into practice in an academic context.
It has been used in theMSc-level Information Retrieval course at the
Delft University of Technology, where groups of two or three stu-
dents had to select, as a final course project, one paper to reproduce
among 20 human-in-the-loop IR publications. Students developed
the clients and registered the experiments through APONE, which
also offers a participant interface to redirect students randomly to
their classmates’ experiments so they act as study subjects as well.

In the remainder of this paper, we introduce APONE in more
detail. Specifically, §2 outlines the limits of existing A/B platforms;
§3 describes the use of APONE in the classroom together with the
description of some of the experiments reproduced. §4 discusses
the technical decisions adopted and §5 describes the setup of ex-
periments within APONE. Issues found and conclusions close the
paper.

2 RELATED PLATFORMS
Existing A/B testing platforms are limited, specially in the type
of data recorded and the support of multivariate testing. This is
the case for the few existing open-source tools (e.g. Vanity or Six-
pack), and is also the case of Google Optimize, the free alternative
by Google. Commercial tools, such as Optimizely, help companies
testing changes in their websites that translate into more customers

https://marrerom.github.io/APONE/
http://ireplatform.ewi.tudelft.nl:8080/APONE
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


DESIRES 2018, August 2018, Bertinoro, Italy Mónica Marrero

Table 1: A/B testing platforms. The assignment method de-
termines how the client displays the variant. In Client-side
(C) and Server-side (S) the client is dynamically modified
through calls to the platform from the client or server-side
respectively. In Traffic-splitting (T) a proxy-server redirects
the user to the appropriate variant.

Free Open
source

Multi-
variate

Assign.
method

Event values

Vanity1/Split2 Y Y N C,S number
Sixpack3 Y Y N C,S none
Proctor4 Y Y N C,S no events
Wasabi5 Y Y N C,S JSON
Optimize6 Y N Y(16) C,T number
Optimizely7 N N Y C, T number
APONE Y Y Y C,S,T JSON, String,

Binary

(i.e. conversion optimization). These tools emphasize ease of de-
ployment over expressiveness, making them limited in terms of
assignment methods (how the client displays the variant [12]) and
data collected.

Table 1 showcases not only the most relevant existing solu-
tions (most popular and most complete), but also highlights what
APONE offers in comparison. We distinguish not only between
free/commercial and open/closed source tools, but also between
how variants can be displayed on the client, the ability for multi-
variate experiments, and the type of data a variant can send back to
the platform (event values). APONE offers multivariate experiments
with unlimited combinations (as opposed to the free solutions), a
greater number of assignment options (catering for more diverse
experiment scenarios) and a diverse set of types of event values,
enabling more complex information to be captured.

3 APONE IN THE CLASSROOM
Given that our main use case of APONE has so far been in the class-
room setting (and we envision that use case to be also interesting
to other academics and teachers), we detail here the workflow our
student teams employ in greater detail.

After selecting one IIR paper to reproduce, the teams followed
these steps:

(1) Develop the client to be displayed to the study participants.
Host the client in a public domain. In this particular case
the client should serve each variant in a different URL (e.g.
http://mydomain/designA and http://mydomain/designB).

(2) Create the corresponding experiment in APONE through
the Web GUI, defining the variants and their URLs.

1http://vanity.labnotes.org
2https://libraries.io/rubygems/split
3http://github.com/sixpack
4http://opensource.indeedeng.io/proctor
5https://github.com/intuit/wasabi
6https://www.google.com/analytics/optimize
7http://www.optimizely.com

Figure 1: APONE’s leaderboard and participation interface.
Users can be ranked by the number of experiments in which
they have participated or by the number of experiments
completed. Participants who already completed an experi-
ment are not again assigned to the same experiment.

(3) Include in the client the appropriate calls to APONE to reg-
ister or receive information from the experiment.

(4) Monitor the experiment in the dashboard (see Figure 4) to
check the participation and distributions of the data regis-
tered.

(5) Participate in others’ experiments from the participation in-
terface in APONE (see Figure 1), which redirects to a random
variant in a random running experiment.

(6) Stop the experiment (if it was not previously set up to au-
tomatically stop after a deadline or a number of partici-
pants),and download and analyze the data registered.

All the experiments conducted by the student teams in APONE
have a specific and well defined task to complete, and therefore
the data registered may not be useful if a study subject does not
complete the whole task. To distinguish which ones actually com-
pleted the task, a specific event can be registered. This way that
subject will not be assigned again to the same experiment, and the
owner of the experiment can later filter out participants who did
not complete the experiment before analyzing the collected data.

In the rest of this section we will explain some of the experiments
conducted by the students. We will show that it is possible to carry
out not only controlled A/B experiments but also quasi-experiments,
where the assignment of control and treatment is not determined
by the experimenter but rather by some characteristic of the subject
(e.g. the device being used), as well as descriptive or correlational
studies where the interest is in describing the interaction of study
subjects.

3.1 A/B Experiments
The experiment conducted in [15] uses crowdsourcing to study the
impact of hints in the success of userswhen trying to find the correct
answer to a factual query. In this case the independent variable is
the type of hints: no hints, global hints and task specific hints. In
APONE this experiment is thus modeled as an A/B experiment with
three variants. Users are redirected with 1/3 probability to one of
those variants and they are asked to complete 4 different factual
questions. The client registers the answers to those questions, the
time spent per question and the answers to a questionnaire that
should be displayed at the end of the task. Because users may skip
one or more questions, experimenters can monitor this information

http://vanity.labnotes.org
https://libraries.io/rubygems/split
http://github.com/sixpack
http://opensource.indeedeng.io/proctor
https://github.com/intuit/wasabi
https://www.google.com/analytics/optimize
http://www.optimizely.com


APONE: Academic Platform for ONline Experiments DESIRES 2018, August 2018, Bertinoro, Italy

APONE

Web
GUI

DDBB

 

Experiment 
Definition
(Planout4j)

Client

Variant

Events

Message Broker 
(RabbitMQ)

Browser

Browser

STUDY PARTICIPANT

EXPERIMENTER

Oauth 
(twitter4j)

Figure 2: APONE’s main components.

in the platform in order to extend the deadline of the experiment
to obtain more useful information from new participants if needed.

In the experiment described in [6] the authors analyze the impact
of time pressure on users when they are confronted with four ad-
hoc search tasks. In this case the experiment is designed in APONE
as an A/B test with two variants where one of them shows a pop-
up message informing the user that she has only five minutes to
complete each task. Several metrics are registered: time per task,
time per document reviewed, SERPs viewed per query, etc.

3.2 Quasi-experiments
In [13] the authors compare the behavior of users in a controlled
environment using mobile or desktop devices when they are con-
fronted with identical web search tasks. In an online environment,
however, we cannot control the device the user is using. To conduct
this type of experiments APONE provides the client with the option
to overwrite the variant that is randomly assigned to a participant.
This way the appropriate interface can be assigned to the study
participants according to the device they are using.

3.3 Observational Studies
The authors in [16] study if the movement of the mouse during
relevance judging is indicative of user attention. To that end they
plotted the movement of the mouse on top of a screen-shot with the
actual contents users are viewing. This is not an A/B test, so in this
case the experiment in APONE will have just one variant and all
users will be redirected to the same client. That client displays the
task that study subjects have to complete and registers in APONE
both the mouse position (textual data) and the screenshots (binary
data). After the experiment is completed the data registered can be
downloaded to reconstruct and analyze the users’ behavior.

4 ARCHITECTURE
The high-level architecture of APONE is shown in Figure 2. The
platform offers RESTful Web services developed in Java. We del-
egate the authentication to Twitter’s OAuth8 and we make use
of RabbitMQ9 as message broker to digest events sent by clients,
which are stored in a MongoDB10 backend. The definition of the
experiments is built upon the PlanOut library (specifically, its Java
port11). All experiments and collected events can be managed and
8http://twitter4j.org/en/index.html
9https://www.rabbitmq.com
10https://www.mongodb.com
11https://github.com/Glassdoor/planout4j

Table 2: PlanOut scripts. Script 1: for each value of the exper-
imental unit (userid), the randomization algorithm assigns
uniformly one of the possible hint options. Script 2: full-
factorial experiment where all combinations of hint and
rankingAlgorithm values are uniformly distributed across
userid.

#Script 1:
hintOptions = [’noHint’,’global’,’specific’];
hint = uniformChoice(choices = hintOptions, unit = userid);

#Script 2
hint = uniformChoice(choices=[’noHint’, ’global’, ’specific’],
unit=userid);
rankingAlgorithm = uniformChoice(choices=[’default’,’BM25’],
unit=userid);

monitored in real-time through a Web interface implemented in
JavaScript, which uses Semantic-UI12 for the look and feel, and
Plotly.js13 to display metrics.

Implementing such a system involves making decisions on three
main elements [12]: (i) how to map experimental units to variants
(randomization algorithm), (ii) how the client displays the appropri-
ate variant (assignment method), and (iii) how to capture metrics
regarding the behavior of users (data path). In the rest of the section
we explain the decisions adopted on those elements as well as the
authentication component.

4.1 Randomization Algorithm
The randomization algorithm is one of the key aspects of an A/B
testing platform, as it randomly maps an experimental unit (the
entity over which metrics are calculated, usually the study subject)
to a variant. For example, if we want to measure the impact of
time pressure on search behavior, study participants should be
equally likely to receive the task with and without time pressure.
Moreover, the same participant should always receive just one
of the variants and this selection should have no effect on other
experiments in which she may be participating at the same time.
Additional requirements in our case are the possibility of balancing
participants among variants (e.g. 30% exposed to designA and 70%
exposed to designB), the support for multivariate experiments, and
the external control (the support to force one of the variants), which
is necessary to run quasi-experiments.

Given these requirements, we opted for the use of PlanOut [2]
(also used in Sixpack). PlanOut is an open-source library for on-
line experiments which solves the problem of randomization with
standard hashing functions (SHA1) combined with specific salts for
experiments and variables, so that each assignment is independent
of others, both within and across experiments. It supports balancing
participants, multivariate experiments and external control. An ad-
ditional advantage, besides being open source, is the option of using
a high-level domain language to define experiments (see examples
in Table 2).

12https://semantic-ui.com
13https://plot.ly/javascript

http://twitter4j.org/en/index.html
https://www.rabbitmq.com
https://www.mongodb.com
https://github.com/Glassdoor/planout4j
https://semantic-ui.com
https://plot.ly/javascript


DESIRES 2018, August 2018, Bertinoro, Italy Mónica Marrero

Figure 3: Definition of a simple experiment in APONE just by indicating a different URL per variant.

4.2 Assignment Method
A client may consist of a simple HTML page or may be a com-
plex dynamic web application, and it may be part of a third-party
website. In any case the client needs to interact with APONE to
get the variant assigned to a particular participant and to register
her behavior. We wanted to make sure that clients developed by
experimenters would not be restricted by any particular program-
ming language or technology, so we implemented RESTful web
services for all communications between APONE and the client.
This way clients can dynamically modify their contents through
calls to APONE from the client (ie. browser) or server side, using
then Client-side or Server-side assignment methods respectively, as
we saw in Table 1. Additionally, we gave support to a third method,
traffic-splitting, where APONE functions as a proxy redirecting
participants to variants, which may be hosted in different physical
or logical servers. This method allowed us to simplify the defini-
tion of the experiments and the development of clients: just by
indicating the name and URLs of the variants in the experiment,
study participants can be redirected there, and no changes to the
original code in the clients are needed. It is also a key component
to transform the platform into a point of contact to those interested
in participating in the running experiments.

4.3 Data Path
APONE allows clients to register events (clicks, dwell time, etc.) and
thus enables the tracking of subjects’ behavior under each variant.
As platform designers we had to decide what type of data can be
registered and where.

The type of data is key to support different types of experiments.
For example, in the case of the mouse movements vs. user atten-
tion study [16], the experimenters should be able to register the

screen-shots besides the position of the mouse. Additionally, the
information of position and query made could be saved in the same
event to make the analysis easier. Therefore APONE provides sup-
port to register events in three different formats: String, JSON or
Binary. Those events are saved in a repository, so course instructors
can have control over the data registered when APONE is used for
academic purposes. We decided to use MongoDB for the support it
offers to deal with collections where the documents may contain dif-
ferent types of data. Additionally, we used RabbitMQ, a lightweight
but reliable message broker, to deal with the events to be registered
and to support real-time monitoring of the running experiments. It
reduces the load of APONE and prevents possible delays that could
negatively affect the experience of the study participants [11].

4.4 Authentication
For our academic use case instructors need to identify experi-
menters and participants. For simplicity we use OAuth and delegate
authentication to Twitter, with the reasoning that creating a Twit-
ter account is not as intrusive as creating a Facebook or LinkedIn
account. The roles of APONE’s users are predefined: administrator
and public user. Public users have access only to the data related to
the experiments they created. Course instructors, as administrators,
have access to the data related to any experiment in APONE.

5 USING APONE
Running an experiment in APONE requires the steps outlined in
section 3. We now briefly discuss how to accomplish them.

5.1 Defining an Experiment
Any experiment is defined through the Web GUI and requires three
types of information (Figure 3): (i) metadata about the experiment,



APONE: Academic Platform for ONline Experiments DESIRES 2018, August 2018, Bertinoro, Italy

Table 3: Main endpoints provided by APONE for the interac-
tion with clients.

1 GET /service/user/checkcompleted/{expID}/{unitID}
2 GET /service/experiment/getparams/{expID}
3 GET /service/experiment/getparams
4 GET /service/experiment/redirect/{expID}/{unitID}
5 GET /service/experiment/redirect/{expID}

6 POST /service/event/register
7 GET /service/user/checkcompleted/{expID}/{unitID}

(ii) a list of variants, and (iii) configuration parameters to determine
how the experiment is being run. The latter includes the percentage
of participants per variant and stopping conditions: deadline and/or
number of participants who completed the experiment. An experi-
ment can be defined simply by providing the name of the variants
and their URLs, but it is also possible to switch to the advanced
mode interface which allows experimenters to include PlanOut
scripts. In this mode it is possible to overwrite variants and launch
full-factorial experiments.

Once defined, an experiment can be started as well as tested
through the GUI. Once it is running, participants can be redirected
to that experiment and clients can request information on the vari-
ant assigned and register events. Experiments can be stopped and
restarted at any time.

5.2 Displaying the Variant
Participants can be exposed to the assigned variant in two different
ways: (i) accessing directly the client, which makes a call to APONE
to receive the variant assigned to that specific participant and exe-
cutes the appropriate code (client/server-side assignment method),
or (ii) accessing a specific endpoint in APONE which redirects them
to the URL where the assigned variant is hosted (traffic-splitting).
Of course in the latter case the definition of the experiment must
include an URL per variant.

For the first approach APONE provides the endpoints 1, 2 and 3
in Table 3. Endpoint 1 contains the experiment identifier (expID)
and the experimental unit identifier (unitID, e.g. session ID of the
participant). APONE can optionally assign a random experimental
unit identifier (using UUID version 1) if it is not provided (endpoint
2). Alternatively endpoint 3 can be used, which receives a JSONwith
those identifiers plus an optional object containing key-value pairs
to override the value of the variables defined in PlanOut scripts. In
all cases they produce a JSON with the identifiers of the experiment
and the experimental unit, the name of the variant assigned, its URL
(if defined), and the values of the variables resulting from executing
the PlanOut script (if defined). For the second approach, APONE
provides endpoints 4 and 5.

5.3 Registering Events
APONE provides endpoint 6 in Table 3 to register events. It expects
as input a JSON with the experiment identifier, the identifier of the
experimental unit, a user-defined name for the event (e.g. click), the
data to be saved (e.g. queries and time to return the results, URLs
of the SERP page, clicks, dwell time) and the format in which this
data will be saved (String, JSON or Binary).

Two predefined events, exposure and completed, can be sent from
the client to indicate that a user has been exposed to and/or com-
pleted the experiment. These events are used by APONE to (i) decide
whether a user can participate (again) in an experiment, (ii) display
in real time aggregated metrics (eg. clicks per experimental unit),
and (iii) automatically stop an experiment when the number of com-
pletions has reached the stopping condition threshold. Clients may
also check whether a user has already completed an experiment
(the predefined event completed has been sent) to avoid attempts to
register new events (endpoint 7).

Finally, the registered events can be filtered and downloaded
from the Web GUI in CSV or JSON format to be analyzed.

5.4 Monitoring Experiments and Participating
The running experiments can be monitored in APONE’s dashboard
(see Figure 4). The time they started and the stopping conditions are
displayed, together with the number of different experimental units
which have been exposed or have completed the experiment up to
that moment. This information can be broken down into groups
according to the variant name and variable values from the PlanOut
scripts (if defined). A click on the chart icon displays the distribution
of the aggregated event values over the experimental units for each
variant. The numbers and charts are updated in real-time, enabling
close monitoring of the running experiments.

Participants can be monitored as well: a “leaderboard”-style
display shows the user name and role of each participant (public
user or administrator), the number of experiments created, the
number of experiments completed as participant and the remaining
experiments she can participate in (see Figure 1).

5.5 jsAPONE
In order to overcome some of the issues we experienced, (which will
be described in the next section) and to simplify the use of APONE,
we developed a JavaScript module called jsAPONE. It offers all the
methods the client may need to interact with APONE to successfully
run the experiment (see Table 4).

To instantiate the module we need to provide it with the URL
where APONE is hosted and the identifier of the running experi-
ment. We can optionally provide also the experimental unit identi-
fier, and specific values for the variables defined in PlanOut scripts,
giving support to the external control as described in Section 4.1.

Table 4: Interface of jsAPONE. Parameters cbSuccess and
cbError are callback functions in case of success and error,
respectively. eName is the user-defined name for the event,
and eValue contains the value of the event in the corre-
sponding data type (except for registerJSON, which receives
a JavaScript object instead of a JSON String.)

1 getExperimentalConditions(cbSuccess)
2 registerString(eName, eValue, cbSuccess, cbError)
3 registerJSON(eName, eValue, cbSuccess, cbError)
4 registerBinaryString(eName, eValue, cbSuccess, cbError)
5 registerBinaryStream(eName, eValue, cbSuccess, cbError)
6 registerExposure(cbSuccess, cbError)
7 registerCompleted(cbSuccess, cbError)
8 isCompleted(cbSuccess, cbError)



DESIRES 2018, August 2018, Bertinoro, Italy Mónica Marrero

Figure 4: Monitoring experiments in APONE. Visible are the running experiments, with the number of distinct units which
were exposed to/completed the experiment (top). Clicking on these numbers, they break down into groups according to the
variant name and variable values obtained from the script if defined (bottom left). Clicking on the chart icon (inside the red
circle) it is possible to select an event (click in this case) and an aggregation function (count in this case, as the event click does
not have a value; average, max, or min could be selected otherwise). For each variant a box plot will be displayed containing
the distribution of the aggregated values over the experimental units—optionally filtering out those which did not complete
the experiment (bottom right).

The methods offered cover the services contained in Table 3.
Method 1 returns the experimental conditions, that is, an object
containing the identifiers of the experiment and the experimental
unit, the variant assigned, and the URLs and values of the PlanOut
variables defined. Methods 2 to 7 can be used to register different
types of events, including the predefined events exposure and com-
pleted. Method 8 returns a boolean indicating if the experiment has
already been completed for the current experimental unit. All these
methods are implemented using JavaScript Promises (if supported
by the browser), to make sure that no action is done before the
experimental conditions are actually set up.

Besides making easier the interaction with the platform, the use
of jsAPONE has the additional advantage that it automatically regis-
ters the exposures, guaranteeing the monitoring of the experiment.
Additionally, if the experimental unit identifier is not set, jsAPONE
and APONE work together to assign a random identifier and keep
it as a cookie, managing the anonymous identifiers of the study
participants in a completely transparent way for the experimenter.

The module jsAPONE can be found in the GitHub repository of
APONE14, and is included in a demo client15 to illustrate its use.

14https://marrerom.github.io/APONE/docs/jsApone.html
15https://marrerom.github.io/ClientE/

6 ISSUES
After the deployment of APONE in the aforementioned IR course
we have observed a number of issues for further development:

• Students struggled to properly implement the client-side interac-
tions with APONE. They had not been provided with jsAPONE
at the time (or any other library to help them in this matter).
Although endpoints are documented, in retrospect it would have
been better to develop and provide them with jsAPONE instead
of letting them write the interaction code themselves.

• Some students opted to not register the events exposure and
completed, unaware of the fact that this choice means that their
experiments cannot be properly monitored and distributed to
participants. Again, providing the JavaScript module jsAPONE,
which automatically registers the exposure event and makes it
easier to register other events, would have reduced this problem.

• As a number of projects required very similar clients (e.g. a search
frontend), the amount of duplicate work required for student
teams to start working on their experiment-specific details could
be reduced by offering a number of standard clients.

• APONE is currently not helping much in the experiment analysis
stage as it merely displays information about the distribution of
aggregated event values over the experimental units and across

https://marrerom.github.io/APONE/docs/jsApone.html
https://marrerom.github.io/ClientE/


APONE: Academic Platform for ONline Experiments DESIRES 2018, August 2018, Bertinoro, Italy

variants. Commercial A/B testing platforms like Optimizely offer
statistical analyses to aid the experimenter in deciding when one
of the variants is significantly better than others [8]. However,
those platforms are focused on conversion optimization and the
range of events and their contents are very limited (ie. typical
events are purchases, page views, etc.). In order to implement a
similar functionality in APONE for any domain the experimenter
should be able to define the Overall Evaluation Criteria from the
data registered in the events (their occurrence and/or contents).

7 CONCLUSIONS
APONE is an active open-source project to simplify the execution
of online experiments. It is build on top of PlanOut, a framework
for field experiments. It has two target populations: academic re-
searchers (to allow them to focus on research instead of boilerplate
code) and educators running large classes with project work requir-
ing online testing.

We have successfully put APONE into practice in an IR course
where students had to reproduce IIR papers, and we have observed
that it is flexible enough to be adapted to different types of experi-
ments and web clients. From the feedback received, two main issues
surfaced: (i) the need of a library (at least in JavaScript) to make the
client-APONE interactions easier to implement, and (ii) the need
of an analysis module to gain more insight from the collected data
via statistical analysis. By the time of writing this paper, we had
already tackled the first issue with the development of jsAPONE,
explained in section 5.5.We also plan to include the analysis module,
together with a repository of standard clients for IR to be reused,
in forthcoming versions.

ACKNOWLEDGMENTS
The author is partially supported by Delft Data Science and thanks Claudia
Hauff and Felipe Moraes for their help and feedback—especially in the tool
design phase and the classroom project execution.

REFERENCES
[1] Leif Azzopardi and Krisztian Balog. 2011. Towards a living lab for information

retrieval research and development. In International Conference of the Cross-
Language Evaluation Forum for European Languages. Springer, 26–37.

[2] Eytan Bakshy, Dean Eckles, and Michael S. Bernstein. 2014. Designing and
deploying online field experiments. In Proc. of the 23rd international conference
on World Wide Web. ACM, 283–292.

[3] Krisztian Balog, David Elsweiler, Evangelos Kanoulas, Liadh Kelly, and Mark D.
Smucker. 2014. Report on the CIKM workshop on living labs for information
retrieval evaluation. In ACM SIGIR Forum, Vol. 48. ACM, 21–28.

[4] Torben Brodt and Frank Hopfgartner. 2014. Shedding light on a living lab: the
CLEF NEWSREEL open recommendation platform. In Proc. of the 5th Information
Interaction in Context Symposium. ACM, 223–226.

[5] Cyril W. Cleverdon. 1991. The Significance of the Cranfield Tests on Index
Languages. In International ACM SIGIR Conference on Research and Development
in Information Retrieval. 3–12.

[6] Anita Crescenzi, Diane Kelly, and Leif Azzopardi. 2015. Time pressure and
system delays in information search. In Proc. of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, 767–770.

[7] Rolf Jagerman, M. de Rijke, Krisztian Balog, Johann Schaible, and Narges
Tavakolpoursaleh. 2017. Overview of TREC OpenSearch 2017. In Proc. of The
Twenty-Sixth Text REtrieval Conference, TREC. 15–17.

[8] Ramesh Johari, Pete Koomen, Leonid Pekelis, and David Walsh. 2017. Peeking
at A/B Tests: Why it matters, and what to do about it. In Proc. of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
1517–1525.

[9] Diane Kelly, Susan Dumais, and Jan O. Pedersen. 2009. Evaluation challenges
and directions for information-seeking support systems. Computer 42, 3 (2009),
60–66.

[10] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils Pohlmann.
2013. Online controlled experiments at large scale. In Proc. of the 19th ACM
SIGKDD international conference on Knowledge discovery and Data Mining. ACM,
1168–1176.

[11] Ron Kohavi, Alex Deng, Roger Longbotham, and Ya Xu. 2014. Seven rules of
thumb for web site experimenters. In Proc. of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 1857–1866.

[12] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M. Henne. 2009.
Controlled experiments on the web: survey and practical guide. Data mining and
knowledge discovery 18, 1 (2009), 140–181.

[13] Kevin Ong, Kalervo Järvelin, Mark Sanderson, and Falk Scholer. 2017. Using
information scent to understand mobile and desktop web search behavior. In
Proc. of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval. ACM, 295–304.

[14] Kevin Ong, Kalervo Järvelin, Mark Sanderson, and Falk Scholer. 2018. QWERTY:
The Effects of Typing on Web Search Behavior. In Proc. of the 2018 Conference on
Human Information Interaction and Retrieval. ACM, 281–284.

[15] Denis Savenkov and Eugene Agichtein. 2014. To hint or not: exploring the
effectiveness of search hints for complex informational tasks. In Proc. of the 37th
international ACM SIGIR conference on Research and development in information
retrieval. ACM, 1115–1118.

[16] Mark D. Smucker, Xiaoyu SunnyGuo, andAndrewToulis. 2014. Mousemovement
during relevance judging: implications for determining user attention. In Proc.
of the 37th international ACM SIGIR conference on Research and development in
information retrieval. ACM, 979–982.

[17] Ya Xu, Nanyu Chen, Addrian Fernandez, Omar Sinno, and Anmol Bhasin. 2015.
From infrastructure to culture: A/b testing challenges in large scale social net-
works. In Proc. of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2227–2236.


	Abstract
	1 Introduction
	2 Related Platforms
	3 APONE in the Classroom
	3.1 A/B Experiments
	3.2 Quasi-experiments
	3.3 Observational Studies

	4 Architecture
	4.1 Randomization Algorithm
	4.2 Assignment Method
	4.3 Data Path
	4.4 Authentication

	5 Using APONE
	5.1 Defining an Experiment
	5.2 Displaying the Variant
	5.3 Registering Events
	5.4 Monitoring Experiments and Participating
	5.5 jsAPONE

	6 Issues
	7 Conclusions
	References

