
A/B Testing with APONE
Mónica Marrero

Web Information Systems
Delft University of Technology

Delft, the Netherlands
m.marrerollinares@tudelft.nl

Claudia Hauff
Web Information Systems

Delft University of Technology
Delft, the Netherlands
c.hauff@tudelft.nl

ABSTRACT
In order to improve long-term retention, ad conversion rates, and so
on, A/B testing has become the norm within Web portals, enabling
efficient large-scale experimentation. While A/B testing is also
increasingly used by academic researchers (with crowd-working
platforms offering a large pool of artificial users), few platforms
are freely available to this end. Academic researchers usually de-
velop adhoc solutions, leading to many duplicated efforts and time
spent on work not directly related to one’s research. As an alterna-
tive, we have developed and open sourced APONE, an Academic
Platform for ONline Experiments. APONE uses PlanOut, a frame-
work and high-level language, to specify online experiments, and
offers Web services and a Web GUI to easily create, manage and
monitor them. By building a user friendly Web application, we
enable not only experts to conduct valid A/B experiments. In partic-
ular as a secondary use case, we envision large classrooms to also
benefit from the deployment of APONE, a vision we put into prac-
tice in a graduate Information Retrieval course. We open-source
APONE at https://marrerom.github.io/APONE. A demo version is
running at http://ireplatform.ewi.tudelft.nl:8080/APONE.

CCS CONCEPTS
• Human-centered computing → Laboratory experiments;
Field studies; • Information systems→ Open source software;

KEYWORDS
A/B testing; Online Experiments; Open Source Platform
ACM Reference Format:
Mónica Marrero and Claudia Hauff. 2018. A/B Testing with APONE. In
SIGIR ’18: The 41st International ACM SIGIR Conference on Research and
Development in Information Retrieval, July 8–12, 2018, Ann Arbor, MI, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3209978.3210164

1 INTRODUCTION
Online evaluation relies on the behavior of real users (or their
proxies, e.g. crowd workers) in real environments to decide if one
approach is significantly better than another, overcoming some of
the limitations we find in offline (batch) methods and evaluations
in very controlled (lab) environments. The most common type
of experiment on the Web is A/B testing [2, 4], where users are

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5657-2/18/07.
https://doi.org/10.1145/3209978.3210164

confronted with two (sometimes more) variants of a system, usually
one or more new approaches (treatments), and an existing approach
(control). A small subset of users are typically exposed to one of
the treatment variants, and their behavior is recorded in order to
decide whether the treatment was successful.

Companies behind global Web portals such as Linkedin [5],
Bing [3], or Facebook [1] have developed their specific platforms
to automate online experiments, creating actual Living Labs where
the interaction of customers with their product is systematically
registered in a non-obtrusive way, to later be analyzed by engineers
and stakeholders in the company before introducing changes. In
contrast, academics usually develop adhoc solutions to run A/B ex-
periments, replicating efforts and making the experiments difficult
to reproduce. Existing platforms are limited especially in the data
recorded and the support for multivariate testing. As an alternative
we designed APONE with two specific target audiences in mind: (i)
academic researchers that want to employ A/B testing without wor-
rying about the programmatic overhead, and (ii) large classrooms
where (under)graduate students are engaged in research practice,
designing and implementing interactive IR experiments and using
APONE to quickly set up A/B experiments with their fellow stu-
dents as user pool. We built it on top of PlanOut [1], an open-source
library and high-level language to specify complex online experi-
ments, and we designed it to be useful to a wide range of settings,
making no assumptions about possible application domains or the
technology clients employ.

Table 1: A/B testing platforms. Assignment method: Client-
side (C), Server-side (S), Traffic-splitting (T).

Free Open
source

Multi-
variate

Assign.
method

Event values

Vanity1/Split2 Y Y N C,S number
Sixpack3 Y Y N C,S none
Proctor4 Y Y N C,S no events
Wasabi5 Y Y N C,S JSON
Optimize6 Y N Y(16) C,T number
Optimizely7 N N Y C, T number
APONE Y Y Y C,S,T JSON, String,

Binary

1http://vanity.labnotes.org
2https://libraries.io/rubygems/split
3http://github.com/sixpack
4http://opensource.indeedeng.io/proctor
5https://github.com/intuit/wasabi
6https://www.google.com/analytics/optimize
7http://www.optimizely.com

https://marrerom.github.io/APONE
http://ireplatform.ewi.tudelft.nl:8080/APONE
https://doi.org/10.1145/3209978.3210164
https://doi.org/10.1145/3209978.3210164
http://vanity.labnotes.org
https://libraries.io/rubygems/split
http://github.com/sixpack
http://opensource.indeedeng.io/proctor
https://github.com/intuit/wasabi
https://www.google.com/analytics/optimize
http://www.optimizely.com


SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA Mónica Marrero and Claudia Hauff

Table 1 shows an overview of some of the most relevant existing
solutions (most popular and most complete), and what APONE
offers in comparison. We distinguish not only between free/ com-
mercial and open/closed source tools, but also between how variants
can be assigned [4], the ability for multivariate experiments, and the
event values that the platform can deal with (i.e. the type of informa-
tion that a variant can send back to the platform, the more diverse,
the more data about an experiment can be captured). APONE offers
multivariate experiments with unlimited combinations (as opposed
to the free solutions), a greater number of assignment options
(catering for more diverse experiment scenarios) and a diverse set
of event values, enabling more complex information to be captured.

2 USAGE SCENARIOS
Alice, an IR researcher, wants to investigate whether personalized
query suggestions lead to more clicks than non-personalized sug-
gestions. She develops three variants, deploys them on three server
instances and starts an APONE experiment: the users all receive
the same APONE endpoint and are automatically assigned and
redirected (traffic-splitting assignment) to the different variants
depending on the experimental conditions (e.g. the user ID saved in
cookies). She can register events with APONE (e.g. a click on a per-
sonalized suggestion) and in real-time check APONE’s dashboard
for the progress of her experiment, including the number of expo-
sures, the number of completed exposures (identified through an
event the clients can send to APONE), and basic statistics about the
registered events, partitioned by experimental condition (Figure 3).

In another scenario, Bob has designed three different search
boxes for the site search of his university. Design A is the most rad-
ical and thus Bob wants just 10% of the university website visitors
to receive it, designs B and C should receive an equal fraction of all
visitors. He hypothesizes that design A will lead to longer queries.
Query length is thus the dependent variable and Bob registers it
as event to APONE. He creates a corresponding experiment on
APONE and for every visitor of the university website an AJAX
call requests the platform (using their session ID as key) for the
corresponding variant (client-side assignment). After 5,000 expo-
sures in total the experiment is complete and the standard design
is returned to the visitors. Charlie runs a similar experiment for
his own website but he thinks that the caption, length and color
of the search box may have different impacts on the query length.
He defines a multivariate experiment to automatically expose her
website users to all the possible combinations of these variables.
In this case the requests to APONE and changes to the search box
are made from the server to avoid malicious users modifying the
experimental conditions (server-side assignment).

Lastly, lets consider a large Information Retrieval graduate course,
where 50 groups of students have designed and implemented their
own interactive IR experiments (all of which are in need of study
participants). They all register their respective experiment through
APONE which also offers a participant interface: with a click of
a button a registered user of APONE is participating in another
user’s experiment, being assigned directly to one of the variants
(traffic-splitting); APONE ensures that no user can access several
variants of the same experiment or participate multiple times in it
once they completed it. A leaderboard within APONE shows off

APONE

Web
GUI

DDBB

 

Experiment 
Definition
(Planout4j)

Client

Variant

Events

Message Broker 
(RabbitMQ)

Browser

Browser

USER

EXPERIMENTER

Oauth 
(twitter4j)

Figure 1: APONE’s main components.

the most active (i.e. most experiments completed) users. We will
put APONE to the test in the coming weeks in exactly this scenario:
more than 100 Information Retrieval students that will reproduce
interactive IR experiments as part of their course work. We plan to
select some of the best projects and run them as demos during the
SIGIR demo session, with the attendees in the role of online users.

3 APONE ARCHITECTURE
The high-level architecture of APONE is shown in Figure 1. APONE
offers RESTful Web services developed in Java, we delegate authen-
tication to Twitter’s OAuth (with the reasoning that creating a Twit-
ter account is not as intrusive as creating a Facebook or LinkedIn
account), we make use of RabbitMQ as message broker to digest
events sent by clients, which are stored in a MongoDB backend, and
we internally define the experiments with PlanOut. All experiments
and collected events can be managed and monitored in real-time
through a Web interface implemented in JavaScript.

The nature of the clients are only restricted by the imagination
of the experimenter as our RESTful Web services ensure no depen-
dency on a particular programming language or technology. To
provide the reader with a concrete example we have implemented
a demo client8 (using ElasticSearch9 as search backend) that is suit-
able for a multivariate experiment: it contains two conditions of
SERP link color (blue/green) and two conditions of the ranking func-
tion (BM25 vs. Elastic’s default). The client registers the following
events with APONE: search (i.e. a user issued a search query, saved
are execution time and the query itself), page (i.e. a user views a
SERP), click, exposure (i.e. a user is exposed to the experiment) and
completed (i.e. a user has completed the experiment).

4 RUNNING A/B TESTS IN APONE
Running an experiment in APONE takes three steps: (i) defining the
experiment, (ii) designing/implementing the client(s) and defining
the assignment method, and (iii) registering the events. Once the
experiment has been initiated it can be monitored in real-time. We
now briefly discuss each step in turn.

4.1 Defining an Experiment
Any experiment requires three types of information (Figure 2):
metadata about the experiment, a list of variants, and configuration
parameters to determine how the experiment is being run. The
latter includes the percentage of users per variant and stopping
8https://marrerom.github.io/ClientE
9https://www.elastic.co

https://marrerom.github.io/ClientE
https://www.elastic.co


A/B Testing with APONE SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA

Figure 2: Definition of a simple experiment in APONE just by indicating a differnt URL per variant.

conditions (such as a deadline and/or number of users who com-
pleted the experiment). An experiment can be defined simply by
providing URLs of the variants, or by switching to the advanced
mode interface which allows users to define experimental variants
in PlanOut language. An experiment can be started as well as tested
through the GUI. Once it is running, the clients can be redirected,
request information on the variant assigned and register events.
They can be stopped and restarted at any time.

4.2 Variant Assignment
A client may consist of a simple HTML page, with AJAX calls to
APONE, or may be a complex dynamic Web application. How users
access it will condition the definition of the experiment in APONE.

A client may use APONE to receive information on the variant
to assign to a user (as in the usage scenario of Bob and Charlie). To
that end, APONE provides the following endpoint:
GET /service/experiment/getparams/{expID}/{unitID}

where expID is the experiment identifier, unitID is the unit for
which the client requests variant assignment information (e.g. ses-
sion ID of the user in Bob’s scenario). A given unit is always as-
signed to the same variant, no matter how often the endpoint is
called. If additionally there is a PlanOut script associated with that
variant, APONE executes it, and the client also receives the values
of the variables resulting from the script. Thus, altogether, returned
is a response in JSON format with the unit identifier, the assigned
variant, and the URL and result of the PlanOut script if defined.

If, on the other hand, we want the users to be redirected to
different URLs according to the variant assigned (as in Alice’s usage
scenario), we have to define those URLs as part of the variants, and
use the following endpoint:
GET /service/experiment/redirect/{expID}/{unitID}

In general we have two options to encode variant information
as shown in Table 2: (i) defining different URLs per variant or (ii)
including scripts. In option two, after being assigned a variant, the
corresponding PlanOut script will be executed. If we use the redirec-
tion endpoint, those pairs variable-value will be included, properly

Table 2: Similar experiments defined with URLs and with or
without PlanOut scripts.

Var. Script URL

Option 1

A – https://mysite.nl/myclient?linkColor=blue
B – https://mysite.nl/myclient?linkColor=green

Option 2

A linkColor=’blue’; https://mysite.nl/myclient
B linkColor=’green; https://mydomain/myclient

Table 3: Full factorial experiment with a PlanOut script: we
get all the combinations of rankingAlg and linkColor values
uniformly distributed on userid.

rankingAlg =uniformChoice(choices=[’default’,’BM25’],unit=userid);
linkColor =uniformChoice(choices=[’blue’, ’green’],unit=userid);

encoded, in the query string of the corresponding URL. Although
in both cases we have defined similar experiments, the benefits
of using PlanOut scripts are threefold: (i) keeping the logic of the
experiments separately from the implementation [1], (ii) supporting
the definition of complex experiments, involving multiple variables,
conditional statements and random assignment operators, and (iii)
automatically launch full-factorial experiments (see Table 3).

4.3 Event Registration
APONE allows clients to register events—in the example of Alice’s
personalized query suggestion experiment she may want to register
all click events. This enables to track in real-time on APONE how
each variant behaves. The registration endpoint is the following:
POST /service/event/register

The endpoint expects as input a JSONwith the experiment identifier,
the experimental unit, the type of event, the information to be saved
(e.g. for the click event saving the actual clicked URL is an important



SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA Mónica Marrero and Claudia Hauff

Figure 3: Monitoring experiments in APONE. We can see the experiments running, with the number of distinct units which
were exposed to/completed the experiment (top). Clicking on these numbers, they breakdown into groups according to the
variant name and variable values obtained from the script if defined (bottom left). Clicking on the chart icon, the ratio of user
defined events (search and click in this case) per exposure are displayed, grouped by variant (bottom right).

piece of information) and the format in which it will be saved
(String, JSON or Binary). Existing by default are two particular
events, exposure and completed, to indicate the participation and
completion of experiments respectively. Clients may also check
if an experimental unit has already completed an experiment, to
avoid attempts to register new events, via the following endpoint:
GET /service/user/checkcompleted/{expID}/{unitID}

The registered events enable monitoring of experiments; they can
be filtered, and downloaded from APONE in CSV or JSON format.

4.4 Monitoring
An example of APONE’s monitoring dashboard is shown in Figure 3.
Currently, three experiments are running and can be tested in
the demo version. The number of exposures and completions are
displayed; a click on them provides more details including the total
number of events per variant. A click on the chart icon at the very
right of each experiment row displays the average number of events
per exposure. The numbers and charts are updated in real-time,
enabling close monitoring of the running A/B experiments.

5 CONCLUSIONS
APONE is an active open-source project to simplify the running of
A/B experiments. It is build on top of PlanOut, a framework for field
experiments. It has two target populations: academic researchers
(to allow them to focus on research instead of boilerplate code for
A/B testing) and educators running large classes with project work
requiring A/B testing. APONE is flexible enough to be adapted
to different types of experiments and Web clients. The platform
includes functionalities to facilitate users to participate in running
experiments, which can be useful not just for education but also
for testing purposes.

As future work we will include an analysis module within the
platform to gainmore insights from the collected data (i.e. registered
events) via statistical tests and early stopping metrics.

On the educational side, we will make APONE an important
component of the (interactive IR) research projects conducted by
graduate students taking a 10 week long Information Retrieval
course. This long-term deployment will help us improve APONE’s
usability on the one hand, and on the other enable us to create an
annotated and searchable repository of sample clients. This course
will be completed by the time of SIGIR 2018 and we will thus be
able to show a number of demo experiments that SIGIR attendees
can participate in through APONE.

ACKNOWLEDGMENTS
This research has been supported by Delft Data Science and NWO project
SearchX (639.022.722). We thank Felipe Moraes for his feedback.

REFERENCES
[1] Eytan Bakshy, Dean Eckles, and Michael S. Bernstein. 2014. Designing and deploy-

ing online field experiments. In Proceedings of the 23rd international conference on
World Wide Web. ACM, 283–292.

[2] Katja Hofmann, Lihong Li, and Filip Radlinski. 2016. Online evaluation for infor-
mation retrieval. Foundations and Trends® in Information Retrieval 10, 1 (2016),
1–117.

[3] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils Pohlmann.
2013. Online controlled experiments at large scale. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and Data Mining. ACM,
1168–1176.

[4] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M. Henne. 2009.
Controlled experiments on the web: survey and practical guide. Data mining and
knowledge discovery 18, 1 (2009), 140–181.

[5] Ya Xu, Nanyu Chen, Addrian Fernandez, Omar Sinno, and Anmol Bhasin. 2015.
From infrastructure to culture: A/b testing challenges in large scale social networks.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2227–2236.


	Abstract
	1 Introduction
	2 Usage Scenarios
	3 APONE Architecture
	4 Running A/B Tests in APONE
	4.1 Defining an Experiment
	4.2 Variant Assignment
	4.3 Event Registration
	4.4 Monitoring

	5 Conclusions
	References

